Sign up to save tools and stay up to date with the latest in AI
bg
bg
2

Free, local, open-source AI app builder

May 30, 2025 - dyad.sh
Dyad offers a comprehensive platform for launching full-stack applications, integrating tools like Supabase for authentication, database management, and server functions. This allows developers to build more than just user interfaces, enabling the creation of a minimum viable product (MVP) entirely within Dyad. The platform supports flexibility by allowing the use of various AI models, including free tiers, without being tied to a single vendor. Developers can use their own API keys with popular models such as Gemini 2.5 Pro, OpenAI's GPT-4.1, and Claude Sonnet 3.7.

Dyad emphasizes no lock-in, ensuring that all source code remains on the developer's machine. This approach allows developers to use their preferred integrated development environments (IDEs) like VS Code or Cursor, and seamlessly integrate Dyad into their existing workflows. This flexibility and control make Dyad a versatile choice for developers looking to maintain ownership of their tools and code while leveraging powerful integrations and AI capabilities.

Key takeaways:

  • Launch your full-stack app entirely in Dyad with Supabase integration, including Auth, Database, and Server Functions.
  • Use any AI model, including free tiers, with your own API keys for top models like Gemini 2.5 Pro, OpenAI's GPT-4.1, and Claude Sonnet 3.7.
  • No vendor lock-in; use your tools and code with all source code remaining on your machine.
  • Seamlessly integrate Dyad into your existing workflow using your preferred IDE like VS Code or Cursor.
View Full Article

Comments (3)

ganesh profile pic
1
gkumar99331d ago
🧭 App Name: Parliamentary Correspondence Tracker

🔹 Modules Overview
1. Letter Entry & Management
- Capture letter details: date, recipient, subject, proposers, nickname, remarks, status, follow-up date
- Upload proposal documents

2. Replies & Communications
- Record written replies and verbal communications
- Log follow-up actions and update status

3. Dashboard & Filtering
- Display all letters in a searchable, filterable table
- Use color codes for statuses
- View full history of a selected letter

4. Analytics & AI Integration
- Summarize activity by department, date, and status
- Visualize trends with graphs and charts
- Use AI for predictive follow-ups and responsiveness scoring

5. Settings & Customization
- Personalize UI: colors, fonts, icons, profile picture
- Define custom statuses and preferences

6. User Experience
- Quick entry and update options on home page
- Smooth navigation and responsive design
++++++++++++++++++++++++++++++++++++
💻 CODING SECTION: Sample Implementation

1. 📦 Backend (Node.js + Express + MongoDB)

letter.model.js (Mongoose Schema)

`js
const mongoose = require('mongoose');

const proposerSchema = new mongoose.Schema({
name: String,
address: String,
phone: String
});

const communicationSchema = new mongoose.Schema({
type: String,
date: Date,
contactPerson: String,
discussion: String,
nextFollowUp: Date
});

const replySchema = new mongoose.Schema({
author: String,
date: Date,
content: String,
attachments: [String]
});

const letterSchema = new mongoose.Schema({
dateIssued: Date,
recipient: {
name: String,
designation: String,
department: String
},
subject: String,
proposers: [proposerSchema],
proposalDocument: String,
nickname: String,
remarks: [{ text: String, timestamp: Date }],
status: String,
nextFollowUp: Date,
communications: [communicationSchema],
replies: [replySchema]
});

module.exports = mongoose.model('Letter', letterSchema);
`

---

letter.routes.js

`js
const express = require('express');
const router = express.Router();
const Letter = require('./letter.model');

// Create new letter
router.post('/', async (req, res) => {
const letter = new Letter(req.body);
await letter.save();
res.status(201).send(letter);
});

// Get all letters
router.get('/', async (req, res) => {
const letters = await Letter.find();
res.send(letters);
});

// Add reply
router.post('/:id/reply', async (req, res) => {
const letter = await Letter.findById(req.params.id);
letter.replies.push(req.body);
await letter.save();
res.send(letter);
});

// Add communication
router.post('/:id/communication', async (req, res) => {
const letter = await Letter.findById(req.params.id);
letter.communications.push(req.body);
await letter.save();
res.send(letter);
});

module.exports = router;
`

---

2. 🎨 Frontend (React + Material UI)

LetterEntryForm.jsx

`jsx
import React, { useState } from 'react';
import { TextField, Button } from '@mui/material';

export default function LetterEntryForm() {
const [formData, setFormData] = useState({
subject: '',
recipient: { name: '', designation: '', department: '' },
proposers: [],
nickname: '',
status: '',
nextFollowUp: ''
});

const handleSubmit = async () => {
await fetch('/api/letters', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(formData)
});
};

return (

setFormData({ ...formData, subject: e.target.value })} />
setFormData({ ...formData, recipient: { ...formData.recipient, name: e.target.value } })} />
{/ Add more fields as needed /}
Submit

);
}
`

---

Dashboard.jsx (Status Table with Filters)

`jsx
import React, { useEffect, useState } from 'react';
import { Table, TableRow, TableCell, TableHead, TableBody, Chip } from '@mui/material';

export default function Dashboard() {
const [letters, setLetters] = useState([]);

useEffect(() => {
fetch('/api/letters')
.then(res => res.json())
.then(data => setLetters(data));
}, []);

const getStatusColor = (status) => {
switch (status) {
case 'Pending': return 'warning';
case 'Replied': return 'success';
case 'Follow-up': return 'info';
default: return 'default';
}
};

return (



Nickname
Subject
Status
Next Follow-Up



{letters.map(letter => (

{letter.nickname}
{letter.subject}

{letter.nextFollowUp}

))}


);
}
`



Perfect choice, Ganesh! Integrating AI analytics will elevate the app from a simple tracker to a smart assistant that helps the parliament member prioritize, predict, and act more effectively.

---

🤖 TEXTUAL CONTENT: AI Analytics Module Overview

🔹 Goals of the AI Module
1. Department Responsiveness Score
- Analyze average reply time per department
- Rank departments by responsiveness

2. Follow-Up Prediction
- Suggest optimal next follow-up dates based on past patterns
- Flag letters likely to be delayed or ignored

3. Communication Heatmap
- Visualize frequency of interactions over time
- Identify peak engagement periods

4. Smart Summaries
- Generate brief summaries of long communication threads
- Highlight unresolved issues or pending actions

5. Usage Insights
- Track number of letters sent per week/month
- Identify top proposers and most active departments

---

🧠 CODING SECTION: AI Analytics Microservice (Python + Flask)

1. 📦 Setup

Install dependencies:

`bash
pip install flask pandas scikit-learn matplotlib seaborn
`

---

2. 🧬 analytics_service.py

`python
from flask import Flask, request, jsonify
import pandas as pd
from datetime import datetime, timedelta

app = Flask(name)

@app.route('/analytics/responsiveness', methods=['POST'])
def department_responsiveness():
data = request.json
df = pd.DataFrame(data['letters'])

df['replytime'] = pd.todatetime(df['replydate']) - pd.todatetime(df['dateIssued'])
df['replydays'] = df['replytime'].dt.days

scores = df.groupby('recipient.department')['replydays'].mean().sortvalues()
result = scores.resetindex().rename(columns={'replydays': 'avgreplydays'}).to_dict(orient='records')
return jsonify(result)

@app.route('/analytics/followup_suggestions', methods=['POST'])
def followup_suggestions():
data = request.json
df = pd.DataFrame(data['letters'])

df['lastcontact'] = pd.todatetime(df['last_contact'])
df['nextsuggested'] = df['lastcontact'] + pd.to_timedelta(7, unit='d') # Example: 7-day cycle

suggestions = df[['nickname', 'lastcontact', 'nextsuggested']].to_dict(orient='records')
return jsonify(suggestions)

@app.route('/analytics/summary', methods=['POST'])
def generate_summary():
data = request.json
communications = pd.DataFrame(data['communications'])

summary = {
"total_contacts": len(communications),
"mostcontactedperson": communications['contactPerson'].mode()[0],
"lastdiscussion": communications.sortvalues('date', ascending=False).iloc[0]['discussion']
}
return jsonify(summary)

if name == 'main':
app.run(port=5001)
`

---

3. 🌐 Frontend Integration (React)

`js
async function fetchResponsivenessScores() {
const res = await fetch('http://localhost:5001/analytics/responsiveness', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ letters: letterData })
});
const scores = await res.json();
setDepartmentScores(scores);
}
`

---

4. 📊 Visualization (Chart.js or Recharts)

`js
const data = {
labels: departmentScores.map(d => d.department),
datasets: [{
label: 'Avg Reply Days',
data: departmentScores.map(d => d.avgreplydays),
backgroundColor: '#3f51b5'
}]
};
`

---
🎞 Chat Animation Tools

🔸 Chat Animate
A creative tool that lets users simulate animated chat conversations. Features include:

- Custom Avatars & Names
- Typewriter-style Message Animation
- GIF Support & Image Uploads
- Adjustable Message Delay
- Preview Links & Editable Messages

Perfect for marketing, tutorials, or meme-style storytelling within your app.

---

✨ Social Media Animation Templates

🔸 Jitter
Offers free animated templates for chat bubbles, social media posts, and UI elements:

- Animated Text Messages
- Instagram Story Effects
- Orbit-style Showreels
- Export formats: GIF, MP4, WebM, Lottie

These can be embedded into your app’s dashboard or notification system for a polished look.

---

🧠 Integration Ideas for Your App

| Feature | Use Case |
|--------|----------|
| Animated Chat Threads | Simulate proposal discussions or status updates |
| Draft Message Queue | Let users save notes before sending replies |
| Avatar Stickers | Represent departments or users visually |
| GIF & Emoji Support | Add personality to internal communication |
| Custom Themes | Match branding or user preferences |
ganesh profile pic
1
gkumar99331d ago
🧭 App Name: Parliamentary Correspondence Tracker

🔹 Modules Overview
1. Letter Entry & Management
- Capture letter details: date, recipient, subject, proposers, nickname, remarks, status, follow-up date
- Upload proposal documents

2. Replies & Communications
- Record written replies and verbal communications
- Log follow-up actions and update status

3. Dashboard & Filtering
- Display all letters in a searchable, filterable table
- Use color codes for statuses
- View the full history of a selected letter

4. Analytics & AI Integration
- Summarize activity by department, date, and status
- Visualize trends with graphs and charts
- Use AI for predictive follow-ups and responsiveness scoring

5. Settings & Customization
- Personalize UI: colors, fonts, icons, profile picture
- Define custom statuses and preferences

6. User Experience
- Quick entry and update options on home page
- Smooth navigation and responsive design
++++++++++++++++++++++++++++++++++++
💻 CODING SECTION: Sample Implementation

1. 📦 Backend (Node.js + Express + MongoDB)

letter.model.js (Mongoose Schema)

`js
const mongoose = require('mongoose');

const proposerSchema = new mongoose.Schema({
name: String,
address: String,
phone: String
});

const communicationSchema = new mongoose.Schema({
type: String,
date: Date,
contactPerson: String,
discussion: String,
nextFollowUp: Date
});

const replySchema = new mongoose.Schema({
author: String,
date: Date,
content: String,
attachments: [String]
});

const letterSchema = new mongoose.Schema({
dateIssued: Date,
recipient: {
name: String,
designation: String,
department: String
},
subject: String,
proposers: [proposerSchema],
proposalDocument: String,
nickname: String,
remarks: [{ text: String, timestamp: Date }],
status: String,
nextFollowUp: Date,
communications: [communicationSchema],
replies: [replySchema]
});

module.exports = mongoose.model('Letter', letterSchema);
`

---

letter.routes.js

`js
const express = require('express');
const router = express.Router();
const Letter = require('./letter.model');

// Create new letter
router.post('/', async (req, res) => {
const letter = new Letter(req.body);
await letter.save();
res.status(201).send(letter);
});

// Get all letters
router.get('/', async (req, res) => {
const letters = await Letter.find();
res.send(letters);
});

// Add reply
router.post('/:id/reply', async (req, res) => {
const letter = await Letter.findById(req.params.id);
letter.replies.push(req.body);
await letter.save();
res.send(letter);
});

// Add communication
router.post('/:id/communication', async (req, res) => {
const letter = await Letter.findById(req.params.id);
letter.communications.push(req.body);
await letter.save();
res.send(letter);
});

module.exports = router;
`

---

2. 🎨 Frontend (React + Material UI)

LetterEntryForm.jsx

`jsx
import React, { useState } from 'react';
import { TextField, Button } from '@mui/material';

export default function LetterEntryForm() {
const [formData, setFormData] = useState({
subject: '',
recipient: { name: '', designation: '', department: '' },
proposers: [],
nickname: '',
status: '',
nextFollowUp: ''
});

const handleSubmit = async () => {
await fetch('/api/letters', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(formData)
});
};

return (

setFormData({ ...formData, subject: e.target.value })} />
setFormData({ ...formData, recipient: { ...formData.recipient, name: e.target.value } })} />
{/ Add more fields as needed /}
Submit

);
}
`

---

Dashboard.jsx (Status Table with Filters)

`jsx
import React, { useEffect, useState } from 'react';
import { Table, TableRow, TableCell, TableHead, TableBody, Chip } from '@mui/material';

export default function Dashboard() {
const [letters, setLetters] = useState([]);

useEffect(() => {
fetch('/api/letters')
.then(res => res.json())
.then(data => setLetters(data));
}, []);

const getStatusColor = (status) => {
switch (status) {
case 'Pending': return 'warning';
case 'Replied': return 'success';
case 'Follow-up': return 'info';
default: return 'default';
}
};

return (



Nickname
Subject
Status
Next Follow-Up



{letters.map(letter => (

{letter.nickname}
{letter.subject}

{letter.nextFollowUp}

))}


);
}
`



Perfect choice, Ganesh! Integrating AI analytics will elevate the app from a simple tracker to a smart assistant that helps the parliament member prioritize, predict, and act more effectively.

---

🤖 TEXTUAL CONTENT: AI Analytics Module Overview

🔹 Goals of the AI Module
1. Department Responsiveness Score
- Analyze average reply time per department
- Rank departments by responsiveness

2. Follow-Up Prediction
- Suggest optimal next follow-up dates based on past patterns
- Flag letters likely to be delayed or ignored

3. Communication Heatmap
- Visualize frequency of interactions over time
- Identify peak engagement periods

4. Smart Summaries
- Generate brief summaries of long communication threads
- Highlight unresolved issues or pending actions

5. Usage Insights
- Track number of letters sent per week/month
- Identify top proposers and most active departments

---

🧠 CODING SECTION: AI Analytics Microservice (Python + Flask)

1. 📦 Setup

Install dependencies:

`bash
pip install flask pandas scikit-learn matplotlib seaborn
`

---

2. 🧬 analytics_service.py

`python
from flask import Flask, request, jsonify
import pandas as pd
from datetime import datetime, timedelta

app = Flask(name)

@app.route('/analytics/responsiveness', methods=['POST'])
def department_responsiveness():
data = request.json
df = pd.DataFrame(data['letters'])

df['replytime'] = pd.todatetime(df['replydate']) - pd.todatetime(df['dateIssued'])
df['replydays'] = df['replytime'].dt.days

scores = df.groupby('recipient.department')['replydays'].mean().sortvalues()
result = scores.resetindex().rename(columns={'replydays': 'avgreplydays'}).to_dict(orient='records')
return jsonify(result)

@app.route('/analytics/followup_suggestions', methods=['POST'])
def followup_suggestions():
data = request.json
df = pd.DataFrame(data['letters'])

df['lastcontact'] = pd.todatetime(df['last_contact'])
df['nextsuggested'] = df['lastcontact'] + pd.to_timedelta(7, unit='d') # Example: 7-day cycle

suggestions = df[['nickname', 'lastcontact', 'nextsuggested']].to_dict(orient='records')
return jsonify(suggestions)

@app.route('/analytics/summary', methods=['POST'])
def generate_summary():
data = request.json
communications = pd.DataFrame(data['communications'])

summary = {
"total_contacts": len(communications),
"mostcontactedperson": communications['contactPerson'].mode()[0],
"lastdiscussion": communications.sortvalues('date', ascending=False).iloc[0]['discussion']
}
return jsonify(summary)

if name == 'main':
app.run(port=5001)
`

---

3. 🌐 Frontend Integration (React)

`js
async function fetchResponsivenessScores() {
const res = await fetch('http://localhost:5001/analytics/responsiveness', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ letters: letterData })
});
const scores = await res.json();
setDepartmentScores(scores);
}
`

---

4. 📊 Visualization (Chart.js or Recharts)

`js
const data = {
labels: departmentScores.map(d => d.department),
datasets: [{
label: 'Avg Reply Days',
data: departmentScores.map(d => d.avgreplydays),
backgroundColor: '#3f51b5'
}]
};
`

---
🎞 Chat Animation Tools

🔸 Chat Animate
A creative tool that lets users simulate animated chat conversations. Features include:

- Custom Avatars & Names
- Typewriter-style Message Animation
- GIF Support & Image Uploads
- Adjustable Message Delay
- Preview Links & Editable Messages

Perfect for marketing, tutorials, or meme-style storytelling within your app.

---

✨ Social Media Animation Templates

🔸 Jitter
Offers free animated templates for chat bubbles, social media posts, and UI elements:

- Animated Text Messages
- Instagram Story Effects
- Orbit-style Showreels
- Export formats: GIF, MP4, WebM, Lottie

These can be embedded into your app’s dashboard or notification system for a polished look.

---

🧠 Integration Ideas for Your App

| Feature | Use Case |
|--------|----------|
| Animated Chat Threads | Simulate proposal discussions or status updates |
| Draft Message Queue | Let users save notes before sending replies |
| Avatar Stickers | Represent departments or users visually |
| GIF & Emoji Support | Add personality to internal communication |
| Custom Themes | Match branding or user preferences |
ganesh profile pic
1
gkumar99331d ago
🧭 App Name: Parliamentary Correspondence Tracker

🔹 Modules Overview
1. Letter Entry & Management
- Capture letter details: date, recipient, subject, proposers, nickname, remarks, status, follow-up date
- Upload proposal documents

2. Replies & Communications
- Record written replies and verbal communications
- Log follow-up actions and update status

3. Dashboard & Filtering
- Display all letters in a searchable, filterable table
- Use color codes for statuses
- View the full history of a selected letter

4. Analytics & AI Integration
- Summarize activity by department, date, and status
- Visualize trends with graphs and charts
- Use AI for predictive follow-ups and responsiveness scoring

5. Settings & Customization
- Personalize UI: colors, fonts, icons, profile picture
- Define custom statuses and preferences

6. User Experience
- Quick entry and update options on home page
- Smooth navigation and responsive design
++++++++++++++++++++++++++++++++++++
💻 CODING SECTION: Sample Implementation

1. 📦 Backend (Node.js + Express + MongoDB)

letter.model.js (Mongoose Schema)

`js
const mongoose = require('mongoose');

const proposerSchema = new mongoose.Schema({
name: String,
address: String,
phone: String
});

const communicationSchema = new mongoose.Schema({
type: String,
date: Date,
contactPerson: String,
discussion: String,
nextFollowUp: Date
});

const replySchema = new mongoose.Schema({
author: String,
date: Date,
content: String,
attachments: [String]
});

const letterSchema = new mongoose.Schema({
dateIssued: Date,
recipient: {
name: String,
designation: String,
department: String
},
subject: String,
proposers: [proposerSchema],
proposalDocument: String,
nickname: String,
remarks: [{ text: String, timestamp: Date }],
status: String,
nextFollowUp: Date,
communications: [communicationSchema],
replies: [replySchema]
});

module.exports = mongoose.model('Letter', letterSchema);
`

---

letter.routes.js

`js
const express = require('express');
const router = express.Router();
const Letter = require('./letter.model');

// Create new letter
router.post('/', async (req, res) => {
const letter = new Letter(req.body);
await letter.save();
res.status(201).send(letter);
});

// Get all letters
router.get('/', async (req, res) => {
const letters = await Letter.find();
res.send(letters);
});

// Add reply
router.post('/:id/reply', async (req, res) => {
const letter = await Letter.findById(req.params.id);
letter.replies.push(req.body);
await letter.save();
res.send(letter);
});

// Add communication
router.post('/:id/communication', async (req, res) => {
const letter = await Letter.findById(req.params.id);
letter.communications.push(req.body);
await letter.save();
res.send(letter);
});

module.exports = router;
`

---

2. 🎨 Frontend (React + Material UI)

LetterEntryForm.jsx

`jsx
import React, { useState } from 'react';
import { TextField, Button } from '@mui/material';

export default function LetterEntryForm() {
const [formData, setFormData] = useState({
subject: '',
recipient: { name: '', designation: '', department: '' },
proposers: [],
nickname: '',
status: '',
nextFollowUp: ''
});

const handleSubmit = async () => {
await fetch('/api/letters', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(formData)
});
};

return (

setFormData({ ...formData, subject: e.target.value })} />
setFormData({ ...formData, recipient: { ...formData.recipient, name: e.target.value } })} />
{/ Add more fields as needed /}
Submit

);
}
`

---

Dashboard.jsx (Status Table with Filters)

`jsx
import React, { useEffect, useState } from 'react';
import { Table, TableRow, TableCell, TableHead, TableBody, Chip } from '@mui/material';

export default function Dashboard() {
const [letters, setLetters] = useState([]);

useEffect(() => {
fetch('/api/letters')
.then(res => res.json())
.then(data => setLetters(data));
}, []);

const getStatusColor = (status) => {
switch (status) {
case 'Pending': return 'warning';
case 'Replied': return 'success';
case 'Follow-up': return 'info';
default: return 'default';
}
};

return (



Nickname
Subject
Status
Next Follow-Up



{letters.map(letter => (

{letter.nickname}
{letter.subject}

{letter.nextFollowUp}

))}


);
}
`



Perfect choice, Ganesh! Integrating AI analytics will elevate the app from a simple tracker to a smart assistant that helps the parliament member prioritize, predict, and act more effectively.

---

🤖 TEXTUAL CONTENT: AI Analytics Module Overview

🔹 Goals of the AI Module
1. Department Responsiveness Score
- Analyze average reply time per department
- Rank departments by responsiveness

2. Follow-Up Prediction
- Suggest optimal next follow-up dates based on past patterns
- Flag letters likely to be delayed or ignored

3. Communication Heatmap
- Visualize frequency of interactions over time
- Identify peak engagement periods

4. Smart Summaries
- Generate brief summaries of long communication threads
- Highlight unresolved issues or pending actions

5. Usage Insights
- Track number of letters sent per week/month
- Identify top proposers and most active departments

---

🧠 CODING SECTION: AI Analytics Microservice (Python + Flask)

1. 📦 Setup

Install dependencies:

`bash
pip install flask pandas scikit-learn matplotlib seaborn
`

---

2. 🧬 analytics_service.py

`python
from flask import Flask, request, jsonify
import pandas as pd
from datetime import datetime, timedelta

app = Flask(name)

@app.route('/analytics/responsiveness', methods=['POST'])
def department_responsiveness():
data = request.json
df = pd.DataFrame(data['letters'])

df['replytime'] = pd.todatetime(df['replydate']) - pd.todatetime(df['dateIssued'])
df['replydays'] = df['replytime'].dt.days

scores = df.groupby('recipient.department')['replydays'].mean().sortvalues()
result = scores.resetindex().rename(columns={'replydays': 'avgreplydays'}).to_dict(orient='records')
return jsonify(result)

@app.route('/analytics/followup_suggestions', methods=['POST'])
def followup_suggestions():
data = request.json
df = pd.DataFrame(data['letters'])

df['lastcontact'] = pd.todatetime(df['last_contact'])
df['nextsuggested'] = df['lastcontact'] + pd.to_timedelta(7, unit='d') # Example: 7-day cycle

suggestions = df[['nickname', 'lastcontact', 'nextsuggested']].to_dict(orient='records')
return jsonify(suggestions)

@app.route('/analytics/summary', methods=['POST'])
def generate_summary():
data = request.json
communications = pd.DataFrame(data['communications'])

summary = {
"total_contacts": len(communications),
"mostcontactedperson": communications['contactPerson'].mode()[0],
"lastdiscussion": communications.sortvalues('date', ascending=False).iloc[0]['discussion']
}
return jsonify(summary)

if name == 'main':
app.run(port=5001)
`

---

3. 🌐 Frontend Integration (React)

`js
async function fetchResponsivenessScores() {
const res = await fetch('http://localhost:5001/analytics/responsiveness', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ letters: letterData })
});
const scores = await res.json();
setDepartmentScores(scores);
}
`

---

4. 📊 Visualization (Chart.js or Recharts)

`js
const data = {
labels: departmentScores.map(d => d.department),
datasets: [{
label: 'Avg Reply Days',
data: departmentScores.map(d => d.avgreplydays),
backgroundColor: '#3f51b5'
}]
};
`

---
🎞 Chat Animation Tools

🔸 Chat Animate
A creative tool that lets users simulate animated chat conversations. Features include:

- Custom Avatars & Names
- Typewriter-style Message Animation
- GIF Support & Image Uploads
- Adjustable Message Delay
- Preview Links & Editable Messages

Perfect for marketing, tutorials, or meme-style storytelling within your app.

---

✨ Social Media Animation Templates

🔸 Jitter
Offers free animated templates for chat bubbles, social media posts, and UI elements:

- Animated Text Messages
- Instagram Story Effects
- Orbit-style Showreels
- Export formats: GIF, MP4, WebM, Lottie

These can be embedded into your app’s dashboard or notification system for a polished look.

---

🧠 Integration Ideas for Your App

| Feature | Use Case |
|--------|----------|
| Animated Chat Threads | Simulate proposal discussions or status updates |
| Draft Message Queue | Let users save notes before sending replies |
| Avatar Stickers | Represent departments or users visually |
| GIF & Emoji Support | Add personality to internal communication |
| Custom Themes | Match branding or user preferences |