Sign up to save tools and stay up to date with the latest in AI
bg
bg
1

GitHub - ses4255/Versatile-OCR-Program: Multi-modal OCR pipeline optimized for ML training (text, figure, math, tables, diagrams)

Apr 05, 2025 - github.com
The article describes an OCR system optimized for extracting structured data from complex educational materials, such as exam papers, to create high-quality training datasets for machine learning. It supports multilingual text, mathematical formulas, tables, diagrams, and charts, providing semantically annotated outputs with contextual explanations. The system achieves high accuracy on academic datasets and is built using technologies like DocLayout-YOLO, Google Vision API, and MathPix OCR.

The OCR system's workflow involves two main steps: initial OCR extraction and semantic interpretation to produce structured, human-readable outputs in JSON or Markdown formats. It includes features like table processing optimization, image and special region processing, and maintains original layout information for machine learning training. The project is open for community-driven enhancements, and the author invites collaboration on AI-related projects.

Key takeaways:

  • The OCR system is optimized for extracting structured data from complex educational materials, supporting multilingual text, mathematical formulas, tables, diagrams, and charts.
  • It achieves high accuracy (over 90-95%) on real-world academic datasets and is built using tools like DocLayout-YOLO, Google Vision API, and MathPix OCR.
  • The system generates AI-ready outputs in JSON or Markdown, including natural language descriptions for visual content to enhance machine learning training.
  • It is an open project aimed at continuous updates and community-driven enhancements, with a focus on creating high-quality training datasets for educational purposes.
View Full Article

Comments (0)

Be the first to comment!